Please let me know if you find errors in this key. Thanks.

Answers to Problems: Transmembrane Trouspont

1. $K=1$. At equilibrium, we expect $[c]_{\text {in }}=[c]_{\text {out }}$
2. $\Delta G^{0 \prime}=-R T \ln K ; \ln K=\ln (1,0)=0$, so $\Delta G^{0^{\prime}}=0$.
($K=1$ and $\Delta G^{0^{\prime}}=0$ fa simple tianspent equilibrial)
3. $\Delta G=\Delta G^{00}+R T \ln Q=R T \ln \left(\frac{[c]_{\text {in }}}{[C]_{\text {out }}}\right)$

$$
=\left(8.314 \frac{\mathrm{~J}}{\mathrm{md} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})\left[\ln \left(\frac{24 \times 10^{-3} \mathrm{M}}{1.2 \times 10^{-3} \mathrm{~m}}\right)\right] \cdot \frac{1 \mathrm{~kJ}}{10^{3} \mathrm{~J}}
$$

$$
=+7.4 \mathrm{~kJ} / \mathrm{mal}
$$

4. The process is NOT spontaneous; $\Delta G>0$.

$$
\text { 5. } A G=R T \ln \left(\frac{\left[\mathrm{Na}_{a}^{+}\right]_{\text {in }}}{\left[\mathrm{Na}_{a}^{+}\right]_{\text {out }}}\right)=R T \ln \left(\frac{5.0 \times 10^{-3} \mathrm{~m}}{140 \times 10^{-3} \mathrm{~m}}\right)=-8.3 \frac{\mathrm{k} T}{\mathrm{mal}}
$$

6. This procis 15 spontaneous; $\triangle G<0$.
7. This equation is the sum of the equilibrium equations in questions 1 and 5. By Hess's law, $\triangle G$ is the sum of the $\Delta G s$ for the two equations: $\Delta G=(7,4 \mathrm{~kJ} / \mathrm{mal})+(-8.3 \mathrm{~kJ} / \mathrm{ml})$ $\Delta G=-0.9 \mathrm{~kJ} / \mathrm{mal}$
NOTE: Yon could also calculate $A G$ this way:

$$
\Delta G=R T \ln \left(\frac{[c]_{\text {in }}\left[N_{c}^{+}\right]_{\text {in }}}{[c]_{\text {out }}\left[N_{a}^{+}\right]_{\text {our }}}\right)=-0.9 \mathrm{~kJ} / \mathrm{ml}
$$

8. Co-tianspent is spontaneous; $\triangle G<O$. The $N_{a}{ }^{\ominus}$ gradient drives uptake of C.

Answers, p. 2
9. $\Delta G=\underbrace{R T \ln Q}_{\text {from } 7}+n Z \Delta \psi$. For poos show in 7 ,

$$
\left.\begin{array}{rl}
\Delta \psi & =\psi_{\text {int }}-\psi_{\text {out }}=-60 \mathrm{mV}(60 \mathrm{mV} \text { "moe nesative"inside }) \\
\left(\text { change on } \mathrm{Na}_{0}(\pm)\right.
\end{array}\right)\left(\begin{array}{rl}
\Delta G & =-0.9 \frac{\mathrm{~kJ}}{\mathrm{~mJ}}+(1)\left(96,485 \frac{\mathrm{~J}}{V \cdot m o l}\right)\left(-60 \times 10^{-3} \mathrm{~V}\right) \cdot \frac{1 \mathrm{~kJ}}{10^{3} \mathrm{~J}} \\
& =-0.9 \frac{\mathrm{~kJ}}{\mathrm{md}}-5.8 \frac{\mathrm{~kJ}}{\mathrm{md}}=-6.7 \mathrm{~kJ} / \mathrm{mol}
\end{array}\right.
$$

10. $\triangle \psi$ makes co-transpot MORE favorable.

$$
\left(\Delta G=-0.9 \frac{\mathrm{kT}}{\mathrm{mal}} \text { versus } \Delta G=-6.7 \mathrm{~kJ} / \mathrm{ml}\right)
$$

12. This process IS NOT spontaneous. Sodium ions are moving against the concentration and voltage gradients.
13. Use Hess's law. The overall process is the sum of
a) $A T P+H_{2} O \rightleftharpoons A D P+P_{i} \quad \Delta G=-50.0 \mathrm{~kJ} / \mathrm{ml}$
and b) $3 \mathrm{Na}_{\text {in }}^{\oplus} \rightleftharpoons 3 \mathrm{Na}_{\text {out }}^{\oplus} \quad \Delta G=3\left(14,1 \frac{\mathrm{~kJ}}{\mathrm{md}}\right)=(\mp) 42,3 \frac{\mathrm{~kJ}}{\mathrm{ml}}$

$$
\Delta G_{\text {Tote }}=-7.7 \mathrm{~kJ} / \mathrm{mal}
$$

NOTE
14. ATP-driven tianspent of N_{a}^{\oplus} is spontaneous.
15. Primary active transport of Na^{\oplus} maintain's $10 n$ and voltage gradients th et support secondary active transport of C into intestinal cells.

